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The primary and inverse instabilities of 
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Consider two infinitely long cylinders of different radii with one inside the other 
but off-centred. The gap between the two cylinders is partially filled with a viscous 
fluid. As the cylinders rotate with independent velocities U1 and U2, a thin liquid 
film coats each of their surfaces all the way around except in the region where the 
viscous fluid completely fills the gap. Interface conditions that connect solutions of 
averaged equations in the viscous fluid region with solutions in the thin film region 
are derived. For the two-interface problem analysed here, two types of instabilities 
occur depending on the amount of viscous fluid between the cylinders. For large fluid 
volume, the primary supercritical instability occurs when the front interface becomes 
unstable as the cylinder velocities are increased. For small fluid volume, the back 
interface passes through the region where the gap width is a minimum to the same 
side as the front interface. Steady state solutions with straight interface edges exhibit 
a turning point with respect to the cylinder velocities. The back interface becomes 
unstable at the turning point; this inverse instability is subcritical. 

1. Introduction 
In recent years, new experiments have been performed that re-examine coating flows 

originally analysed by Pearson (1960) and Pitts & Greiller (1961). These experiments 
have been carried out with a number of different geometries: half-submerged counter- 
rotating cylinders located next to each other (Coyle, Macosko & Scriven 1990), a 
rotating cylinder and a flat plate (Hakim et al. 1990) and non-concentric co-rotating 
or counter-rotating cylinders as shown in figure 1 (Rabaud, Michalland & Couder 
1990; Rabaud & Hakim 1991; Michalland 1992; Pan & de Bruyn 1993). 

There have been a number of different mathematical models developed for the 
coating flow problems listed above. The objective of these models is to determine 
the position and stability of an interface edge as a function of cylinder velocity. In 
figure 1, the two interface edges correspond to the points at the tip of the tongue- 
shaped interfaces; the actual interface edges come out of the page. In a typical coating 
flow problem, the interface edge is initially straight for small cylinder velocities. As 
the cylinder velocities increase, the edge becomes unstable and takes on a sinusoidal 
shape. For larger velocities the interface edge is composed of deep cells or viscous 
fingers. This instability is commonly referred to as the ‘ribbing’ instability. 

We observe that when the cylinders in figure 1 are rotating with equal velocities 
(V1 = U2) the interface edge moving in the reference frame of the boundaries is 
similar to an interface edge moving in a Hele-Shaw cell. It is known that when a 
less viscous fluid forces a more viscous fluid from the gap between parallel plates 
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FIGURE 1. Sketch of the rotating cylinders and the two menisci. The cylinders with radii R1 and R2 
rotate with velocities U1 and Uz. The minimum gap width between the two cylinders is bo. 

(Hele-Shaw cell) in a direction perpendicular to the interface that the interface is 
unstable to small disturbances (Saffman & Taylor 1958). The opposite case is stable. 
This means that if the cylinders are moving in the direction shown in the figure this 
same instability mechanism tends to make the interface edge on the right unstable 
and the one on the left stable. 

In contrast to the flow between parallel plates where the gap width is constant, the 
above coating flow problems all have a variable gap width. This varying gap width 
adds a stabilizing factor due to the pressure jump across the interface. To leading 
order (small velocities) the pressure jump is given by po - p  - Ap - 2T/b ,  where po is 
the constant pressure of the air, p is fluid pressure, T is surface tension, and b is the 
gap width at the interface edge. For a wavy interface, smaller b corresponds to lower 
fluid pressure at the interface; thus, the effect of a varying gap width is fluid motion 
along the interface from large-b to small-b regions which decreases the amplitude of a 
disturbance on the interface. These competing effects mean that unlike the Hele-Shaw 
problem where the interface is always unstable, there is a finite value of velocity at 
which the instability first occurs. 

Rabaud et al. (1990) have done an experimental study of the different dynamical 
regimes that occur for the apparatus shown in figure 1 for both co-rotating and 
counter-rotating cylinders. Their stability diagram is shown in figure 2. Depending 
on the choice of the cylinder velocities U1 and U2, they observe stationary periodic 
cells, solitary waves that travel on top of these cells, and cells that travel into the page 
or out of the page (see figure 1). In addition, for some values of the velocities, they 
observe strong fluctuations in wavelength and constant formation and destruction of 
cells. They refer to this behaviour as ‘spatiotemporal chaos’. One of the objectives of 
this research is to develop equations that will allow us to study some of these different 
types of phenomena. 

Most mathematical models for the coating flow problems discussed above assume 
that the lubrication approximation can be used to describe the flow of the viscous 
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FIGURE 2. Stability diagram for the experimental results of Rabaud et al. (1990). Results correspond 
to bo/R2 = 7.55 x lop3. They observed stationary periodic cells (SC), travelling cells (TC), solitary 
waves (SW) moving on a stationary sinusoidal front, and spatiotemperal chaos (STC). Reprinted 
with permission. 

fluid in the narrow region between the cylinders and away from the menisci or 
interface edges. This approximation leads to equations for the velocity components 
that have been averaged across the gap and for a pressure that is independent of 
the direction across the gap. This means that two-dimensional flow corresponding 
to straight interface edges is replaced by a one-dimensional problem and that three- 
dimensional flow corresponding to interface edges with lateral variations is replaced 
by a two-dimensional problem. 

The major difficulty with the above approach is finding appropriate boundary 
conditions that connect the averaged equations valid in the viscous fluid region 
with equations that describe the thin liquid films that coat the cylinders. The 
averaged equations derived from the lubrication approximation are not valid in the 
neighbourhood of a meniscus. As we approach the meniscus, the flow becomes 
two-dimensional when we have straight interface edges and three-dimensional when 
the edges have lateral variations. The boundary conditions should be derived from 
the fluid flow in the meniscus region. 

Another approach that can be used when the interface edges are straight is to 
solve the full two-dimensional problem directly. This was done by Coyle, Macosko 
& Scriven (1986) for partially submerged forward roll coating. If the ultimate 
objective is to determine interface edge shapes with lateral variations, then reducing 
the three-dimensional problem to a two-dimensional problem using the averaged 
equations and appropriate boundary conditions is a promising approach; solving the 
full three-dimensional problem directly involves very intensive computations. 

Many different variations on the boundary conditions have been used; some of 
these conditions have been reviewed by Savage (1977). In recent years, approximations 
to the pressure jump boundary condition have taken the form 

where R is the radius of curvature in the lateral direction (along the interface edge) 
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and db/dx gives the linear divergence of the cylinders in the meniscus region. Fi 
are functions of the capillary numbers, Cal = pU1/T and Caz = pUZ/T, where 
p is the fluid viscosity. The capillary number gives the ratio of viscous forces to 
the force of surface tension. To get the leading-order contribution to the pressure 
jump (Fo)  for Cal = Caz, the cylinders in the meniscus region are approximated by 
parallel plates (the Hele-Shaw cell problem). This problem has been solved for small 
capillary numbers by Bretherton (1961) using perturbation methods and solved for 
finite capillary numbers by Ruschak (1982) using numerical methods. 

To get the next-order corrections to the boundary conditions, one must account 
for variations along the interface edge and the linear divergence of the cylinders in 
the meniscus region. Here, we assume that the minimum gap width bo divided by an 
appropriate length scale along the interface edge is a small quantity and the same 
order of magnitude as the derivative of gap width with respect to distance along the 
cylinder. 

Park & Homsy (1984) used perturbation methods to determine the small capillary 
number correction to the boundary conditions that accounts for lateral variations of 
the interface edge. Reinelt (1987) solved this problem numerically for finite capillary 
numbers. In both cases, the solution was determined between parallel plates. These 
results are valid in the meniscus region for the coating flow problems discussed here. 
Corrections to the boundary conditions due to the linear divergence of the cylinders 
in the meniscus region have not been determined. The coupling of a diverging gap 
width and lateral edge variations is a higher-order effect that is not needed. 

The above approaches all assume that in the reference frame of the tip of the 
meniscus both cylinders or parallel plates have equal velocities. To study the different 
regimes shown in figure 2, boundary conditions that account for different cylinder 
velocities need to be determined. In addition, when the cylinder velocities are positive 
as shown in figure 1, these boundary conditions are only valid for the right-hand 
interface edge and not the left-hand interface edge. 

At the right-hand meniscus, the thickness of each thin film is determined as part of 
the solution. Once the thin films have been pulled out of the viscous fluid, they are 
then carried around to the left-hand meniscus by the cylinders and pushed back into 
the viscous fluid. We note that for a wavy interface edge, the thin films that coat the 
cylinders have variable thickness in the direction parallel to the cylinder axes. In this 
analysis, we assume that changes in film thickness due to levelling in the direction of 
the cylinder axes or gravity occur on a time scale that is much longer than the time it 
takes the cylinder to complete one revolution. Using this assumption, the appropriate 
boundary conditions at the left meniscus will be a function of the capillary numbers 
and a function of film thickness as determined at the right interface. 

In the past, it has been assumed that the left interface in the two interface problem 
is far enough away from the right interface that it can be ignored in calculating 
the position and stability of the right interface. In figure 2, many of the interesting 
phenomena occurs for counter-rotating cylinders. In this case, each interface edge 
has one thin film that is being pulled out of the viscous fluid and another being 
pushed back into the viscous fluid; thus, it is definitely necessary to account for both 
interfaces in the counter-rotating problem. 

In this research, we determine steady state solutions for both co-rotating and 
counter-rotating cylinders and analyse their stability. We refer to this instability 
as the ‘primary’ instability. A second kind of instability has been found when the 
amount of fluid placed in the apparatus is small. When both cylinders are rotating 
in the same direction as shown in figure 1, the left interface moves to the right of the 
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position where the gap width is a minimum. When this occurs, the effect of a varying 
gap width on the left interface is now destabilizing. Note that the fluid and air have 
switched places relative to the direction in which the gap narrows. This means that 
at the left interface, there are now competing effects: the more viscous fluid pushing 
out the less viscous fluid (relative to the motion of the cylinders) is stabilizing and 
the varying gap width is destabilizing. These competing effects are directly opposite 
to those effects still competing at the right interface. 

As the velocities of the cylinders increase, the left interface becomes unstable before 
the right interface. We refer to this instability as the 'inverse' instability. This new 
instability has recently been observed in experiments by Michalland (1992). It is not 
possible to get this instability without a mathematical model that accounts for both 
interfaces. Results for both the primary and inverse instabilities are discussed below. 

2. Derivation of equations 
2.1. Local coordinate system 

In the coating flow problem shown in figure 1, we assume that the minimum gap 
width bo is much smaller than R2, the radius of the small cylinder. The ratio R2/R1 is 
an O( 1) quantity, but the equations derived below are also valid for a cylinder and a 
flat plate if one sets U1 = 0 and lets R1 + co. In addition, the equations are valid for 
both co-rotating and counter-rotating cylinders. The effect of gravity on the solutions 
is neglected. 

To find an expression for the gap width b in terms of position along the outer 
cylinder, we introduce a cylindrical coordinate system (r, 4, y) at the centre of the 
large cylinder, where 4 = 0 corresponds to b = bo and the y-coordinate is parallel 
to the axes of the cylinders. By neglecting terms of O(bolR2) and by assuming that 
the volume of liquid is small enough so that b/bo is an 0(1) quantity in the region 
between the two menisci, we get the following approximation for the gap width: 

Here, x = R1+ is the physical variable along the large cylinder; thus, the gap width 
is measured along a line segment perpendicular to the outer cylinder. The length a0 
defined in (2.1) is given by 

-112 

a0 = (2R2b0)1/2 (1 - 2) . 

We define the quantity 6 = bo/ao and note that 6 = O ( ( ~ O / R ~ ) ' / ~ )  4 1. Throughout 
this analysis, we retain terms of O(6) but neglect terms of O(S2) = O(bo/R2). We note 
that if R2 is close to R1, then 6 is even smaller than the order given above. 

Figures 3(a) and 3(b) show the top and side views of the region near where the 
gap width is smallest. The origin of the local coordinate system (x,y,z) is located at 
( r ,  4,y) = (R1,0,0); the z-coordinate is related to r by z = R1 - r. The positions of 
the tip or leading edge of the left and right menisci are x = x~(y , t )  and x = x ~ ( y , t )  
as shown. 

The dashed lines in figure 3(a) divide the physical domain into a centre region 
where the viscous fluid completely fills the gap, a thin film region on the far left 
and right that is connected by the moving cylinders, and a narrow region about each 
meniscus. Equations valid in the centre region (away from the menisci) are derived by 
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FIGURE 3. Viscous fluid region located between the tips of the two menisci located at X L ( ~ ,  t )  and 
x&, t). (a) Top view. The dashed lines indicate the meniscus region, where the averaged equations 
are no longer valid. The coordinate axes 5? and j j  move with the interface edge as shown. (b)  Side 
view. Thin liquid films of thickness ml and m2 coat the rotating cylinders. The variable gap width 
is b(x).  

averaging solutions of Stokes equations across the gap between the cylinders. Interface 
conditions that connect the solutions of these averaged equations with solutions in 
the thin film region are derived from local solutions valid in the neighbourhood of 
each meniscus. 

2.2. Averaged equations 
To derive the averaged equations valid in the centre region away from the menisci, 
we begin with Stokes equations written in the cylindrical coordinate system (r ,  4, y) 
and convert these equations to the local coordinate system ( x , y , z )  using the change 
of variables discussed above. In the centre region, the appropriate length scale in the 
x- and y-directions is e, while the length scale in the z-direction is bo. Neglecting 
terms of 0(S2) = O(bo/Rz), we get the usual lubrication approximation of Stokes 
equations : 

The no-slip boundary condition at z = 0 is ( u , v , w )  = (UI,O,O); at z = b(x),  where 
b(x) is given in (2.1), (u, v ,  w )  = (U2,0, (db/dx)U2). Here, db/dx is O(6) and is retained. 
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Solving these equations subject to the boundary conditions, we get p = p(x,y) and 

z z(z - b(x)) - d p  z(z - b(x)) ap 
b(x) 2p a x '  2P a Y  * 

V =  u = u1 +(U2 - U1)- + 
The velocity component in the z-direction is not given here, but is easily derived from 
(2.4) and the boundary conditions. By integrating the velocity components and the 
mass conservation equation from z = 0 to z = b(x) and dividing by b(x), we get the 
averaged velocity components, 

b2 a p  1 b2 a p  
= + -((J 1+U2), v=--- 

12pax 2 12p ay 
and the corresponding averaged continuity equation, 

a(bii) a(b8) -+-=o.  ax ay 

2.3. Interface conditions 
Before solving the averaged equations given in (2.5) and (2.6), it is necessary to derive 
interface conditions that connect the region where the averaged equations are valid 
with the region where the thin films are located. They are derived from local solutions 
valid in the neighbourhood of each meniscus. To determine these local solutions, we 
introduce the edge coordinate system shown in figure 3(a). The coordinates R and 9 
vary in the directions perpendicular and tangential to the interface with R = 0 at the 
tip or edge of the meniscus; thus, the coordinate system moves with the interface. 
The variable 6' is the angle between the x- and Z-axes. 

Figure 4(a) shows a side view of the region near the right meniscus with the tip 
of the tongue-shaped interface located at x = XR(Y, t). This (2, z)-planar cross-section 
is perpendicular to the interface edge. The velocity components of the cylinders in 
the %-direction are UlcosOR and U~COSOR as shown. U,R is the component of the 
interface edge velocity in the same direction. 

If the equations are expressed in terms of the dimensionless variables appropriate 
for the viscous fluid region, then the width of the meniscus region is O(6) .  We replace 
this narrow region in which a given quantity changes rapidly from one value to 
another by a discontinuity in that quantity and an appropriate jump condition. These 
jump conditions are analogous to shock conditions in gas-dynamics or other fluid 
dynamics problems. In deriving these conditions, it is helpful to view the meniscus 
region as vanishingly small as shown in figure 4(b). In this context, it is understood 
that the solution in the meniscus region provides the smooth transition between the 
viscous fluid solution in the limit as we approach the interface edge and the solution 
in the thin film region. 

There are two interface conditions. The kinematic condition or conservation of 
fluid at the interface edge is given by 

b(xj)iinj = ml U1 cos O j  + m2 U2 cos O j  + Unj [b(xj) - ml - m2] , (2.7) 

where j = L, R refers to the left and right meniscus, i&, = iij cos O j  + 8, sin O j  is the 
averaged velocity normal to the interface edge, ml and m2 give the thickness of the 
thin film on the larger and smaller cylinders, and U,, = (axj/at)cosOj is the normal 
velocity of the interface edge. In words, the amount of fluid flowing out of the 
region where the averaged equations are valid must equal the amount of fluid flowing 
into the two thin films plus the flow due to the moving interface. The effect on the 



3 10 D. A. Reinelt 

m 2  
I 
f 

I t 

I V 
A A 

u, cos 0, X T  T 
BIRmI ml 

m 2  
I 

I 
I 
I 4 

ul cos OR X R  t - r 
ml 

FIGURE 4. Region near the right meniscus. (a) Side view showing the (Z,z)-plane which is 
perpendicular to the interface edge X R ( Y ,  t ) .  (b )  Side view in the limit in which the meniscus region 
vanishes. 

kinematic condition from fluid flow parallel to the interface edge is neglected. The 
pressure jump condition at x = x L  and x = x R  is expressed as 

PO - d x j )  = APj 3 (2.8) 

where po is the pressure of the air and the fluid in the thin films and p is the pressure 
in the region where the averaged equations are valid. 

To complete the formulation of the problem, we require that the total amount of 
fluid be conserved. If VO is the volume of fluid located between y = y1 and y = y2, 
then 

where b(x )  given in (2.1) is easily integrated from x L  to X R  and Ax = X R  - X L .  The 
first term is the volume of fluid between the tips of the two menisci, the second and 
third terms give the volume of fluid in the two thin films, and the last two terms 
are the remaining fluid near the two menisci not accounted for by the other terms; 
thus, AL and AR give the cross-sectional area of the region between x L  and the left 
meniscus and XR and the right meniscus. 

The functions ml, m2, Apj, AL and AR are determined from solutions of the 
appropriate two-dimensional Stokes equations in the the plane perpendicular to the 
interface edge ( J  = constant) or (R,z)-plane as shown in figure 4(a). These equations 
are derived by changing from the (x, y ,  z )  to the (2, jj, z )  coordinate system and then 
scaling the variables appropriately. Near the meniscus, the appropriate lengthscale 
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in the 2- and z-directions is bo and the lengthscale in the jj-direction is ao. A more 
detailed analysis of this problem for a Hele-Shaw cell corresponding to b(x) = bo and 
U1 = U2 can be found in Reinelt (1987). Solutions are determined using perturbation 
methods for small capillary numbers or using numerical methods for O( 1) capillary 
numbers. 

2.4. interface conditions: perturbation results 
Assuming that the capillary numbers are small, we derive results similar to the 
interface conditions derived by Park & Homsy (1984) for two-phase displacement in 
a Hele-Shaw cell. The major differences between their results and those discussed 
here are that we account for a gap width that varies with x, two different velocities 
on the walls of the cylinders, and thin films that are pulled out of and pushed into 
the region where the viscous fluid fills the gap. 

In the limit as the capillary numbers tend to zero, the thickness of the thin films ml 
and m2 is zero and the jump in pressure is balanced by the effective pressure due to 
surface tension and the curvature of the interface. In the plane perpendicular to the 
interface edge, the static meniscus is just an arc of a circle with radius of curvature 
pi (figure 4a shows the arc of the circle for the case when ml and m2 are not zero). 
Along the interface edge x = xj(y, t), the curvature Cj(y, t) is given by 

(2.10) 

We note that the curvature varies with position along the interface edge and is not 
known until the averaged equations are solved and the shape of the interface edges 
are determined. 

In terms of the above quantities, the jump in pressure across the static meniscus at 
the right interface is 

(2.11) 

This form of the pressure jump is only valid if l/pR, the curvature across the gap, is 
much larger than CR, the curvature along the interface edge. The radius p~ is chosen 
so that the interface approaches the cylinders tangentially. To leading order, it is just 
equal to half of the gap width at the tip of the meniscus; thus, p~ - po = b(xR)/2. We 
have assumed that the appropriate lengthscale along the interface edge is a0 so that 
the curvature CR is O(l/ao); thus, the second curvature term in (2.11) is O(6) smaller 
than the first term. Without this assumption, it would be necessary to solve the full 
three-dimensional Stokes equations. The factor n/4 in front of the second term arises 
in solving the O(6) curvature equation and in choosing the unknown constants such 
that the interface approaches the cylinders tangentially (see Park & Homsy 1984; 
Reinelt 1987). 

To find the O(6) correction to the radius of the static meniscus p R ,  we note that 
the gap is wider at the position where the meniscus meets the cylinders tangentially 
than it is at the tip. The points where the meniscus and cylinders meet correspond 
to 2 = 20 = b(xR)/2 or the value of x given within the brackets below; thus, the 
diameter of the static meniscus is 

(2.12) 

For the local coordinate system defined above, the 2 value at which the interface 
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intersects the upper cylinder is slightly smaller than the 2 value at which the interface 
intersects the lower cylinder. This difference leads to a term that is O(b0d2); terms of 
this magnitude are neglected throughout this analysis. 

We now derive the leading-order dependence of ml, m2 and Ap on small capillary 
number. As discussed by Bretherton (1961) in his analysis of the motion of long 
bubbles in tubes, the leading-order effect of small capillary number enters the problem 
at O(CU~’~). Neglecting terms of O(Cu), there is still a static meniscus in the plane 
perpendicular to the interface edge that is valid away from the region where the 
meniscus meets the cylinders; thus, the pressure jump given in (2.11) is still valid 
except that 2PR (the diameter of the dashed circle shown in figure 4a) is now given 
by 

(2.13) 

The last two terms account for the presence of the thin films of thickness ml and 
m2; 9 1  and 9 2  are numerical constants that need to be determined. One might 
guess that we could simply set g1 = B2 = 1 so that a meniscus or arc of a circle 
with radius PR would meet up with the two thin films of constant thickness ml and 
m2. Unfortunately, the problem is not this simple; there is a transition region in the 
vicinity of the ends of the meniscus at R = Z0 where some of the O(Ca) terms in the 
Stokes equations valid in the (R,z)-plane can no longer be neglected. New equations 
are derived by introducing a new set of scalings in the transition region (Park & 
Homsy 1984; Reinelt 1987). 

In the transition region located near the point 2 = Ro and z = 0 on the larger 
cylinder, solutions of these new equations lead to the following ordinary differential 
equation for film thickness m(2) : 

(2.14) 

This equation arises in coating flows (Landau & Levich 1942), withdrawal of soap 
films from Plateau borders (Mysels, Shinoda & Frankel 1959), long bubble in tubes 
(Bretherton 1961), etc. The correct solution of this ordinary differential equation 
must asymptote to the constant film thickness ml as 2 + co and must also match 
onto the asymptotic expansion of the equation that describes the static meniscus. 
The asymptotic expansion of the static meniscus of radius pR as it approaches the 
transition region (2 + no) is 

(2.15) 

where m19’l is the distance between the static meniscus and the cylinder at R = 20 as 
shown in figure 4(a). 

By introducing the change of variables, 2 - 2, = -m1t(3Cal cos &-1’3 and m = 
mlq, the differential equation (2.14) and asymptotic expansion (2.15) become 

(2.16) 

(2.17) 
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The differential equation (2.16) is integrated numerically from its asymptotic expan- 
sion as q + 1 (rn + rnl), 

f i  (2.18) 
2 

q - 1 + d e r  + Be-rI2 sin -< + Ve-tl2 cos - < + . * * ,  
f i  
2 

to its asymptotic expansion as q + co (rn s- rnl), 

q - ;9<2+2<+92+***  . (2.19) 

Since we have a third-order differential equation, three of the six constants must 
be specified; the remaining three are dependent upon the specified constants and 
determined as part of the numerical solution of the differential equation. Matching 
the asymptotic expansions in (2.17) and (2.19) specifies one of the constants, 2 = 0. 
It also gives 9 1  = W and the thickness of the thin film, 

rnl N - b ( X ~  )8(3CUl cos e R ) 2 / 3  . (2.20) 
2 

Here we have used po = b(x~)/2.  
The asymptotic expansion given in (2.18) must asymptote to a constant film 

thickness q + 1 (rn + rnl) as R + 00; this means that exponentially growing terms 
must be eliminated. There are two cases to consider: Cal > 0 and Cal < 0. For 
Cal > 0, R + co corresponds to < + -a; thus, q + 1 implies that 93 = 55' = 0. 
Having determined three of the constants, 2, 93, and V, the remaining three constants 
are determined by numerically integrating (2.16). The values of the constants that 
appear in the interface conditions are 9 = 0.6430 and W = 2.8996. 

For Cal < 0, R + co corresponds to < + 00; thus, q + 1 in (2.18) implies 
that d = 0 and only two constants have been specified. The missing constant is 
determined by observing that when U1 < 0 a thin film of thickness rnl is being pushed 
into the viscous fluid (see figure 4a). This means that the value of rnl is already 
known; its value was determined when the thin film was pulled out of the viscous 
fluid at the other meniscus located at x = xL(y , t ) .  This implies that (2.20) is an 
equation for rnl when Cal > 0 and an equation for 9 when Cal < 0. To allow for 
all possible values of rnl, (2.16) is integrated for arbitrary 9; thus, W, B, and V are 
functions of 9'. Figure 5 shows W = F(9). 

As stated in the introduction, it is assumed that changes in film thickness due to 
levelling occur on a time scale that is much longer than the time it takes the cylinder 
to complete one revolution. We also note that even though W can be negative when a 
thin film is pushed into the fluid region this does mean that the interface overlaps the 
wall of the cylinder. The equation of the static meniscus or arc of a circle of radius 
p~ is not valid at j;: = 20; it is replaced by the solution of the ordinary differential 
equation, which provides a smooth transition from the interface in the static meniscus 
region to the thin film of constant thickness without overlap. 

The leading-order term of the cross-sectional area AR given in (2.9), which accounts 
for the fluid above and below the meniscus, is 

AR - 2pi - 7~pi/2 = (4 - .)b2(x~)/8 . (2.21) 

This quantity is just the area of the rectangle where the meniscus is located minus 
the area of the semicircular region filled with air. The contribution to the volume 
from this term is O(6) smaller than the contribution from the first term in (2.9); 
higher-order terms are neglected. 

Before determining the steady state solution for the coating flow problem shown 
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in figure 1, we rescale and summarize the boundary conditions. Let x = QR and 
y = where Q is given in (2.2); thus, b(2) = 1 + R2 and the lateral curvature 
C j  = & j / Q .  Each thin film has the same thickness at R = RL and RR, Introducing the 
dimensionless film thickness hij = mi/b(xj), we have 

(2.22) mi = b o ( l +  j2;)ritiL = bo( l+  j Z i ) h i R  , 

m.. A V - - - 2 l p i j ( 3 c a i  cos ej)2/3.  (2.23) 
Here, i = 1,2 and j = 15, R refer to the larger and smaller cylinder and left and right 
meniscus respectively. The kinematic condition given in (2.7) becomes 

1 a; .  '[ CL at 
i I j  cos O j  + i j j  sin O j  = - h l j C a 1  + h 2 j C a 2  + +(l - h1j - h 2 j )  cos O j  . (2.24) 

Here, we have set t = (p&/T)?. Perhaps it would be more appropriate to set 
t = (Q/U)?, where U is one of the cylinder velocities or the average of the two 
velocities. We have used the alternative scaling to give us the freedom to set one or 
both of the velocities to zero; it also makes the notation simpler when either of the 
cylinders moves in the opposite direction. 

Using (2.13), the pressure jump condition in (2.11) becomes 

In the places where there is a multiple sign, the top and bottom signs correspond to 
the left and right interface edges respectively. This variation in sign is due to the fact 
that the menisci at the left and right interface edges open in opposite direcGons. If ye  
set VO = ( y 2  - yl)Ao in the volume equation given in (2.9) and A0 = ~ b o A o ,  then A0 

is the dimensionless area initially occupied by the fluid in the (x,z)-plane; this new 
parameter must be specified. 
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3.  Steady state solutions 
In this section, steady state solutions with straight interface edges are 4etermined; 

this means that 2L and iR are independent of 9 and ? and that O j  and Cj are both 
equal to zero. The averaged velocity components are 

where ii follows from (2.6) and Q is a constant flow rate. For the reasons discussed 
above, we have set Q = b o T Q / p  instead of scaling Q by bo and a characteristic 
velocity related to the cylinder velocities. In terms of 0, the kinematic condition 
(2.24) reduces to 

0 = (1 + 2 p l l j C U l  + h2jCU2) . (3.2) 
Substituting (3.1) into (2.5), we integrate with respect to 2 to get 

where 
2 22 

g l  = tan-'$ + - 
3( 1 + 22)2 1 + A 2 7  g2 = g 1 +  (3.4) 

and b is a constant that needs to be determined. 
By evaluating (3.3) at R j  and substituting into (2.25), we get a jump condition at 

each meniscus ( j  = L,R).  Eliminating b from these two equations gives us a single 
pressure condition. This pressure condition combined with the conservation of fluid 
condition given in (2.9) provides the two equations that determine 2~ and 2R. All 
other quantities that appearin these equations are determined from equations that 
are given in $2.4, except for Q which is given in (3.2). 

4. Linear stability analysis 
To analyse the stability of the straight interface edge solutions, we perturb each 

interface edge with a sinusoidal wave and linearize the equations. Solving these 
equations determines whether the amplitude of the disturbance is growing or decaying. 
The perturbations are given by 

A L  = 2; + eL(?) sink?, 

2 R  = 20, + ER(Z)  sink9 , 
where e j  = 2j exp(a3) with 2 ~ ,  .̂R 4 1. Since the linearized equations are coupled, it is 
important to examine the relative magnitudes of & and 2~ when a > 0 to identify 
where the disturbance to the interface is more pronounced. In this analysis, it is 
not possible to perturb the interfaces independently; the form of the perturbation on 
one interface determines the form of the perturbation in the fluid and on the other 
interface. 

In the fluid, the pressure and velocity components are 
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where PO(%) and uo(2) are given in (3.3) and (3.1) respectively and ? = (T /ap) t .  Using 
the averaged equations given in (2.5) and (2.6), we get 

(1 + 22)2 
y l = -  kP' 

(1 + 2212 ap1 
u 1 = -  

12 a 2 '  12 

and 

Linear independent solutions of the differential equation are determined by numerical 
integration. For convenience, we set p' = qL(?)qL(k, 2 ) + q ~ ( ? ) q ~ ( k ,  2) and choose linear 
independent solutions that satisfy qL(k, 2;) = 0 and qR(k, 2;) = 0. 

The above expressions are now substituted into the interface edge conditions and 
linearized. For simplicity, the equations are only given for Ca = Cal = Ca2 2 0. The 
pressure condition (2.25) leads to 

where j = L and R, multiple signs correspond to the left and right interface edges 
and we have dropped the dependence on i because Cal = Ca2. The first term on 
the right-hand side results from linearizing po(2 )  about 2;; the last term accounts 
for lateral curvature. We further note that since Ca > 0, we have 9~ = 0.6430 and 
9~ = 2.8996; thus, 9; and 9; are both equal to zero. In addition, &k is also zero, 
because cos8, = 1 + O(e;) in equation (2.23). At the left interface edge, hL, YL,  and 
aL are given by hL = &; + A; sin k 9 ,  etc. Linearizing (2.22) gives 

We get an identical expression for 9;; 9; is determined numerically by linearizing 
the functional dependence of 9~ on 9~ as shown in figure 5. 

Linearizing the kinematic condition given in (2.24), we get 

where j = L and R. The first term on the right-hand side results from linearizing 
~ ' ( 2 )  about 2;; the second term comes from u1(2), where 4 denotes the derivative of 
q with respect to 2. The volume equation given in (2.9) is also linearized. Since the 
solution is periodic in 9 and sink9 integrates to zero over a period, the linearized 
volume equation is satisfied automatically. 

Substituting V L  and q~ given in (4.2) into (4.4) gives two coupled equations for e~ 
and cR. Setting ej = ajexp(o?) and assuming that 2~ and 2~ are not both zero leads 
to a quadratic equation for o. The two roots of the equation are real. For each o, the 
relative magnitudes of g L  and g R  are determined. 
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FIGURE 6. Positions of the left and right interface edges as a function of the capillary number 
Ca = Cal = Ca2. The parameters are R2/Rl = 33/50, bolR2 = 1 x and = 500. The right 
interface becomes unstable at the capillary number where the curves change from solid to dashed 
lines. 

5. Results 
5.1. Primary instability 

The primary instability occurs when the volume of fluid between the cylinders is large 
enough so that an interface edge does not pass through the region where the gap 
width is a minimu?. Figure 6 shows the position of the left and right interface for 
bO/R2 = 1 x A0 = 500, and Ca = Cal = Caz 2 0. The initial positions (Ca = 0) 
of the interface edges are symmetric about 2 = 0 as expected. Note the dramatic 
change in the position of the interface edges for small capillary number. In particular, 
kR initially increases due to the motion of the cylinders and then decreases as more 
fluid moves into the thin films; this has been observed in experiments. The position 
of AL moves towards 2 = 0 and will pass to the other side (2, > 0) if Â,, is small 
enough; otherwise, it will begin to move away from 2 = 0 until the right interface 
becomes unstable. 

For co-rotating cylinders, Cal 2 0 and Caz 2 0, the critical capillary numbers 
where the right inte;face becomes unstable are very insensitive to the amount of fluid 
present as long as A0 is not too close to the threshold value that separaLes solutions 
with 2 primary instability from those with an inverse instability. As A0 increases, 
the change in the position of the right interface at the critical capillary number is 
very small; the position of the left interface decreases to accommodate the increased 
volume of fluid. This means that for a sufficient amount of fluid and co-rotating 
cylinders, the assumption made in the past that the left interface is far enough away 
from the right interface that it can be ignored in the analysis is valid. 

To illustrate the effect of A^o on the solution, we have plotted the decay rate 0 as 
a function of the wavenumber k at the critical capillary number (see figure 7). The 
second root of the quadratic equation for 0 is always negative and has not been 
plotted. Observe that 0 = 0 at k = 0. This result was proven analytically and is true 
for both co-rotating and counter-rotating cylinders and is not dependent upon the 
perturbation results; thus, it is true for arbitrary Cal and Caz. To show this result, we 
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FIGURE 7. -, Decay rate Q versus wavenumber k at the critical capillary number for the parameters 
given in figure 6 (A0 = 500). The other curves show the effect of changing the amount of fluid 
between the cylinders: - - -, = 450 and - - -, 20 = 1000. Dimensionless decay rate shown is 
very small due to the choice of scaling for t .  

first note that at k = 0 linearly independent solutions of (4.1) are g2(2) given in (3.4) 
and 1. Setting q~ = g2(2) - g2(2R) and q~ = gz(2) - g2(2~), we get that both &(2'$ 
and ~j~(2:) are equal to (8/3)[1 + (20)2]-3. This result and the result for iit; given 
in (4.3) are now substituted into (4.41. We now multiply both sides of the equation 
by [1+ (27)2] and find that the right-hand sides of the two equations ( j  = L, R)  are 
identical. This means that the constant term in the quadratic equation for cr at k = 0 
is missing and one of the two roots must be ze,ro. 

= lo00 are nearly 
identical except at small values of k. The critical capillary number and wavenumber 
are C,a = 8.93 x and k = 0.846 
for A0 = 1o00. The bend in these curves is caused by an imperfect bifurcation. 
The graph of the second root of the quadratic equation (not shown) begins at 
(k, 6) = (0, -0.22 x goes towards the bend in the curve shownAand then bends 
downward just before it reaches this curve. The small parameter l/Ao that is needed 
when we account for the left interfafe leads to a dramatic change in the bifurcation 
diagram from two crossinAg curves (A0 + co) to the situation described above. 

To show the effect of A0 on the solution as we approach the threshold value that 
separates the primary and inverse stabilities, we have plotted the curve corresponding 
to A^o = 450. At this value of A^o, we get Ca = 8.77 x and k = 0.843. The 
shape of the curve betweenAk = 0 and the critical wavenumber is flattening out and 
approaching the k-axis. At A0 = 400, the differe5ce between this part of the curve and 
the k-axis would not be visible on this plot. At A0 = 400, we get Ca = 8.14 x and 
k = 0.442. Note that the critical wavenumber is moving t2wards k = 0 and that the 
second derivative would be nearly zero at the origin. At A. = 350, the left interface 
passes tkrough the minimum gap region and there is no longer a primary instability. 

For A0 2 500, the ratio of 2~ to g L  is greater than 15 to 1; thus, the right interface 
is identified as the unstable interface. At Â o = 450, the ratio is about 3 to 2 so that 
the disturbances are nearly equal in magnitude. 

In figure 7, the curves corresponding to A0 = 500 and 

and k = 0.847 for A^o = 500 and Ca = 8.94 x 
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RGURE 9. Critical wavelength versus bo/R2 for the primary instability where R2 = 33 mm. -, 
Co-rotating cylinders with Ca = Cal = Caz. - - -, One of the cylinders is stationary (Ca = Cal or 
Ca = Ca*). 

Figure 8 shows the critical capillary number when the amount of fluid is consid- 
erably larger than the threshold value and bo/& < We have not done the 
calculations at larger values of bO/R2 because the corresponding critical capillary 
numbers would be too large for the perturbation results of the interface conditions to 
be valid. Figure 9 shows the critical wavelength 1 in physical units when R2 = 33 mm. 
The dimensionless wavelength 2 is a decreasing function of bo/R2; figure 9 has been 
plotted using physical units to avoid creating the false impression that 1 is also a 
decreasing function of 
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FIGURE 10. Critical capillary numbers for the primary instability when>he cylinders rotat: indepen- 
dently. The parameters are R2/R1 = 33/50 and bo/R2 = 1 x -, A0 = 500 and - - -, A0 = 1000. 
The point on the curve corresponds to the critical capillary number shown in figure 6. 

Figure 10 shows the critical capillary numbers for bo/R2 = 1 x and = 500 
andA1OOO. This graph shows that the co-rotating problem is insensitive to changes 
in Ao. It also shows that the counter-rotating problem does depend on fluid volume. 
This is to be expected since in the counter-rotating problem, one of the thin films 
is now pulled out of the viscous fluid at the left interface and pushed back into the 
viscous fluid at the right interface. The thickness of this film depends on the position 
of the left interface; thus, it is no longer possible to decrease the position of the 
left interface to accommodate additional volume without affecting the solution at the 
right interface. 

Notice that the curve shown in figure 10 has the:ame qualitative shape as the 
experimental results shown in figure 2 (especially for A0 = 500). A direct comparison 
between the results cannot be made because the gap width in figure 2 is bo/R2 = 

7.55 x This gap width leads to capillary numbers that are too large for the 
perturbation results to be valid. 

5.2. Inverse instability 
The inverse instability occurs when the volume of fluid between the cylinders is small 
enough that an interface edge passes through the region where the gap width is 
a minimum. We begin by examining the special case Ca = Cal = Ca2 in detail. 
Figure 11 shows the position of the left and right interfaces for bo/R2 = 1 x 
and a. = 40. As the capillary number increases, the thin films become thicker. Since 
the total amount of fluid is conserved, the amount of fluid between the tips of the 
menisci decreases and the tips move towards each other. As Ca is increased further, 
the position of the left interface becomes positive. At Ca = 2.209 x lop3, there is 
a turning point leading to an upper branch of steady state solutions with straight 
edges. We note that on the upper branch the tips of the menisci are moving towards 
each other even though the capillary number is decreasing. This is possible because 
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FIGURE 11. -, Positions of the left and right interface edges as a function of the caqllary number 
Ca = Cal = Ca2. The parameters are R2/R1 = 33/50, bo/R2 = 1 x loM4, and A0 = 40. The 
left interface passes through the minimum gap width at 2 = 0. There is a turning point at 
C a  = 2.209 x lop3. - - -, Positions of the interface edges based upon a simplified pressure jump 
condition. There is no longer a turning point. For both sets of curves j Z L  and j Z R  are equal when all 
the fluid is located in the thin films. 

thicker thin films can be achieved by increasing Ca or by increasing RR (see (2.20) or 
(2.22)). On the upper branch of solutions, RR is increasing as Ca decreases. 

Regardless of their stability, there are no steady state solutions with straight edges 
past the turning point. This result is very different from the primary instability 
problem where steady state solutions exist for large capillary number. We note that 
our solutions are only valid as long as the separation between the tips of the menisci 
Ax = XR - xL is O(&) and not O(b0) or equivalently RR - RL b 6. At the turning point 
in figure 11, RR - RL = 0.497 and 6 = 0.00412, so this condition is certainly satisfied. 

Table 1 gives the capillary number and the p?sitions of the interface edges at the 
turning point for different values of bo/R2 and Ao. Figure 12 is a plot of the capillary 
numbers at the turning points that are given in table 1. It is clea5from the plot that 
turning point capillary number increases when either bo/R2 or A0 increases. Recall 
that the physical area where the fluid is located is A0 = aobotl̂ o; thus, increasing bo/R2 
or 20 increases the total volume of fluid. 

To illustrate the importance of the small terms in the pressure jump condition, we 
neglect all terms in (2.25) except for the leading-order term of O( T/bo). The dashed 
curves in figure 11 give the positions of the interface edges for this case. The simpler 
pressure jump condition gives good results until the turning point is approached. The 
new solution does not have a turning point. We denote the capillary number where 
the dashed curves meet as the maximum capillary number Cam. 

To approximate the functional relationship between bo/R2, 20, and the capillary 
number at the turning point, we determine an asymptotic relationship between bo/R2, 
Ao, and Ca,.,To derive this asymptotic formula, we use the simpler pressure condition 
and neglect Q = O(Ca5’3) in (3.3) in comparison with the O(Ca) term. This leads to 
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bo/R2 = lo-' 

2.803 x lop4 
0.656 
0.809 

4.328 x 
0.996 
1.215 

6.145 x 
1.400 
1.706 

9.171 x lop4 
2.066 
2.541 

1.212 x 10-3 
2.705 
3.367 

1.585 x lop3 
3.500 
4.421 

2.240 x 
4.857 
6.283 

bo/R2 = lop4 

1.078 x lop3 
0.790 
1.041 

1.589 x 
1.132 
1.487 

2.209 x lop3 
1.536 
2.033 

3.265 x lop3 
2.200 
2.970 

4.318 x 
2.823 
3.898 

bo/R2 = 

3.998 x 
0.885 
1.280 

5.792 x 
1.203 
1.763 

8.063 x 
1.564 
2.357 

1.220 x 10-2 
2.077 
3.363 

TABLE 1. Values of Cal = Caz, 2L and iR at the turning point for R ~ / R I  = 33/50 and different 
values of bo/Rz and fluid volume corresponding to the dimensionless cross-sectional area 20. Blank 
spaces indicate parameter values at which the primary instability occurs. 

a single pressure condition, F(2L)  = F(2R) ,  where 

2 + - 
1 + 22 

26 
F ( 2 )  = - 

1 +22 

See the discussion at the end of 93 for the derivation of a single pressure equation. F ( 2 )  
is an increasing function for 2 < 3Ca/6 and a decreasing function for 2 > 3Ca/6;  
thus, 2 L  < 3Ca/6 and 2 R  2 3Ca/6. The maximum capillary number occurs when 
2~ = 2~ = 3Ca/6 and when all the liquid is in the thin films, A. - 271(R1 + R2)m or 

The parameter 6 is given below (2.2) and 9 = 0.6430. The numerical coefficients 
depend on R2/R1 ; they were evaluated for R2/R1 = 33/50. This asymptotic relation- 
ship is also plotted in figure 12. The dashed lines in the figure end at values where 
twice the film thickness equals the minimum gap width bo; otherwise, the thin films 
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FIGURE 12. Capillary number at the turning point versus &. 0, bo/R2 = lo-'; 0, bo/& = x, 
bo/& = lop3. - - -, Asymptotic relationship for the maximum capillary number using simplified 
pressure jump condition. 

collide as they pass through the place where the gap width is a minimum. Since (5.2) 
is actually an asymptotic relationship for Cam and not the turning point capillary 
number, it is not surprising that the curves are higher than the data points that 
specify turning point capillary numbers; nonetheless, they do seem to have the same 
functional form. When 2; = 9Ca2/d2 +- 1, the first term on the right-hand side of 
(5.2) can be neglected; the resulting equation is expressed as 

Ca - 0.130 &Ig (!$la (5.3) 

This asymptotic relationship is valid for the right half of the plot in figure 12 where the 
curves on the log-log plot are nearly straight lines. Using the method of least squares 
and the functional relationship given in (5.2), a single equation that approximates all 
of the data for the turning point capillary numbers in table 1 is determined. The 
new coefficients in (5.2) are 4.70 and 358 which gives 0.110 for the new coefficient in 
(5.3). Finding the new coefficients in (5.2) isAequivalent to scaling find Ca; thus, 
the new coefficients correspond to replacing A0 and Ca in (5.2) by 1.05Ao and 1.20Ca. 
This means that Cam is approximately 20% larger than the turning point capillary 
number. On a log-log plot these scalings correspond to translating the curves in figure 
12 down and slightly to the left. 

Using the linear stability analysis discussed above, the stability of the steady state 
solutions is determined. One of the roots is negative for all k and Ca; thus, we focus 
our attention on the other root which we denote as a ( k , i L ) .  It is more convenient to 
use RL instead of Ca as the parameter in the problem because of the presence of the 
turning point in the steady solutions. Figure 13 shows typical curves for versus k 
at three different values of R L ;  the middle curve corresponds to the critical point. 

As before, we observe that 0 = 0 at k = 0 for all values of RL. The critical point 
occurs at that value of j Z L  where the graph of 0 versus k at k = 0 changes from being 
concave down to concave up or where the second derivative of 0 at k = 0 vanishes. 
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FIGURE 13. Typical set of curves for the decay rate CJ versus wavenumber k .  The lower and upper 
curves correspond to steady state solutions that are stable and unstable respectively. On the middle 
curve, the second derivative of with respect to k at k = 0 is zero. This curve corresponds to a 
steady state solution that is neutrally stable. Decay rate is very small due to the choice of scaling 
for t. 

FIGURE 14. The experimental result of Michalland (1992) shows the two steady states for the left 
interface edge. The front is moving towards the right. Reprinted with permission. 

This means that in contrast to the primary instability problem, it is not possible to 
find a critical wavenumber k from the linear stability analysis. 

The relative error between the calculated values for the the capillary number at 
the turning point and the critical capillary number is on the order of 0.1%; thus, 
we conclude that they are equal. The lower branch of solutions for iL and iR that 
starts at Ca = 0 is stable and the upper branch of solutions past the turning point is 
unstable. By examining the relative magnitudes of the amplitudes of the disturbances 
at the turning point, it is clear that iL, the interface that has passed through the 
minimum gap width, is the unstable interface. In addition, the presence of the turning 
point means that there should be a jump to a new branch of solutions and not a 
gradual change to a small-amplitude sinusoidal wave which occurs for the primary 
instability. This phenomenon has been observed in the experiments of Michalland 
(1992). Figure 14 shows a photograph in which the straight interface solution is 
changing to the new steady state solution. 

Figure 15 shows the positions of the menisci or interface edges for counter-rotating 
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FIGURE 15. -, Positions of left and right interface edges versus Caz for counter-rotating cylinders. 
Dimensionless parameters are Cal = -0.001, bo/Rz = lop4, R2/R1 = 33/50, and 8, = 40. The 
dashed line indicates that the positions of the interfaces about 2 = 0 are symmetric when the 
cylinders are rotating in opposite directions with equal speeds. 

cylinders. We have set Cal = -0.001 and have increased the other capillary number 
Ca2. When Ca2 = -Gal, the positions of the interfaces are symmetric about R = 0 
as expected. There is a turning point in the counter-rotating case just like in the 
co-rotating case. Again, the turning point corresponds to the critical capillary number. 

We now let Cal and Ca2 be independent parameters. Figure 16 shows the values of 
the two capillary numbers at which turning points occur or equivalently the capillary 
numbers at which the interface that has passed through the minimum gap width 
becomes unstable. Since the geometry shown in figure 1 is symmetric about R = 0, 
there is a second curve of turning points corresponding to (-Cal,-Caz) that is not 
shown. There are similar curves for each of the pairs of parameters given in table 1. 
The curves are not symmetric about Cal = Ca2 because the amount of viscous fluid 
that remains between the two interface edges depends on whether a thin film of a 
given thickness coats the larger cylinder or smaller cylinder. 

6. Summary 
Coating flow problems that have free surfaces with significant lateral variations 

along an interface edge can be solved using a fully three-dimensional formulation, but 
not without very intensive computations. An alternative approach is to approximate 
the three-dimensional problem by an appropriate two-dimensional problem. In the 
narrow gap between the cylinders and away from the menisci, the lubrication approx- 
imation leads to two-dimensional averaged equations for the velocity and pressure. 

In the vicinity of a meniscus, the flow becomes three-dimensional and the averaged 
equations are no longer valid. Instead of abandoning the two-dimensional approach, 
we take advantage of the fact that in most coating flow problems variations along 
the interface edge occur on a length scale that is much larger than the small distance 
across the gap. This allows us to approximate the flow in the neighbourhood of a 
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RGURE 16. Critical capillary numbers for the inverse instability when the cylinders rotate indepen- 
dently. Parameters are R?/R, = 33/50 and bo/Rz = 1 x - - -, .& = 20 and -, 20 = 40. The 
points on the solid curve correspond to the turning points shown in figures 11 and 15. 

meniscus by a series of two-dimensional problems in the plane perpendicular to the 
interface edge. 

Solutions of these problems lead to interface conditions that connect solutions of 
the averaged equations in the viscous fluid region with equations that describe the 
thin liquid films. For example, each of the Fi in (1.1) is determined from the solution 
of an appropriate two-dimensional problem in the neighbourhood of the meniscus. 
Here the Fi have been determined for small capillary numbers using perturbation 
methods, but they can also be determined for O( 1) capillary numbers using numerical 
methods. Particular attention has been given to accounting for both interfaces and 
for thin films being pulled out of and pushed into the viscous fluid region. 

The two-interface problem allows us to examine phenomena that occur when the 
cylinders are rotating in opposite directions or when the volume of fluid between 
the cylinders is small. Without loss of generality, the velocities of the cylinders are 
restricted to Cal +Ca2 2 0. With this assumption, the fluid volume determines whether 
the left interface edge passes through the minimum gap width. If it does not, there 
is a primary instability; if it does, there is an inverse instability. The characteristics 
of these instabilities are very different from each other. The right interface becomes 
unstable for the primary instability and the left interface becomes unstable for the 
inverse instability. If the left interface edge does not move to the opposite side, there 
is a single steady state solution with straight interface edges at each value of capillary 
number. If it does pass to the other side, the steady state solutions exhibit a turning 
point; there are no solutions with straight interface edges past the turning point. 

The primary instability is supercritical; the interface edge changes gradually from 
being straight to an interface with deep cells. A critical wavenumber at the onset of 
the instability is determined. The inverse instability is subcritical; there is a dramatic 
change in the solution from a straight interface to an interface with deep cells. A 
critical wavenumber cannot be determined from the linear stability analysis. The 
characteristics described here for each type of instability appear to be general; they 
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do not depend upon the values of the parameters bo/Rz, &,, or whether the cylinders 
are co-rotating or counter-rotating. The plots of the critical values of the capillary 
numbers (see Figures 10 and 16) are also different. When the capillary numbers are 
both positive, the curve for the primary instability is concave toward the origin and 
independent of fluid volume; the curve for the inverse instability is concave away 
from the origin and dependent upon fluid volume. 

Though there is qualitative agreement between the theory and experiments, it still 
needs to be determined whether there is quantitative agreement. To make a quantita- 
tive comparison, it is necessary to perform the experiments at smaller values of bo/R2 
or numerically determine interface conditions t!at are valid for O( 1) capillary num- 
bers. It is also necessary to know the values of A0 in the experiments. Only the results 
for the primary instability with co-rotating cylinders are independent of fluid volume. 

The averaged equations and interface conditions discussed here provide a frame- 
work for examining interface edges with deep cells. It is also hoped that it will 
eventually lead to a better understanding of some of the time-dependent phenomena 
observed in recent experiments. 

The author wishes to express his appreciation to G. M. Homsy for many stimulating 
discussions during a sabbatical leave at Stanford University in 199&91. 

REFERENCES 

BRETHERTON, F. P. 1961 The motion of long bubbles in tubes. J .  Fluid Mech. 10, 166188. 
COYLE, D. J., MACOSKO, C. W. & SCRIVEN, L. E. 1986 Film-splitting flows in forward roll coating. 

J. Fluid Mech. 171, 183-207. 
COYLE, D. J., MACOSKO, C. W. & SCRIVEN, L. E. 1990 Stability of symmetric film-splitting between 

counter-rotating cylinders. J .  Fluid Mech. 216, 437458. 
HAKIM, V., RABAUD, M., THOM~, H. & COUDER, Y. 1990 Directional growth in viscous fingering. 

In New Trends in Nonlinear Dynamics and Pattern Forming Phenomena: The Geometry of 
Nonequilibrium (ed. P. Coullet & P. Huerre), pp. 327-337. Plenum. 

LANDAU, L. & LEVICH, B. 1942 Dragging of a liquid by a moving plate. Acta Physicochim. URSS 17, 

MICHALLAND, S. 1992 Etude des differents regimes dynamiques de l'instabilite de l'imprimeur. Thesis, 

MYSELS, K. J., SHINODA, K. & FRANKEL, S. 1959 Soap Films: Studies of Their Thinning. Pergamon. 
PAN, L. & BRWN, J. R. DE 1993 Spatially uniform traveling cellular patterns at a driven interface. 

PARK, C.-W. & HOMSY, G. M. 1984 Two-phase displacement in Hele-Shaw cells: theory. J. Fluid 

PEARSON, J. R. A. 1960 The instability of uniform viscous flow under rollers and spreaders. J .  Fluid 

PIITS, E. & GREILLER, J. 1961 The flow of thin liquid films between rollers. J. Fluid Mech. 11, 33-50. 
RABAUD, M. & HAKIM, V. 1991 Shape of stationary and travelling cells in the printer's instability. 

In Instabilities and Nonequilibrium Structures I11 (ed. E. Tirapegui & W. Zeller), pp. 217-223. 
Kluwer Academic. 

RABAUD, M., MICHALLAND, S. & COUDER, Y. 1990 Dynamical regimes of directional viscous 
fingering: spatiotemporal chaos and wave propagation. Phys. Rev. Lett. 64, 184-187. 

REINELT, D. A. 1987 Interface conditions for two-phase displacement in Hele-Shaw cells. J .  Fluid 
Mech. 183, 219-234. 

RUSCHAK, K. J. 1982 Boundary conditions at a liquid/air interface in lubrication flows. J.  Fluid 
Mech. 119, 107-120. 

SAFFMAN, P. G. & TAYLOR, G. I. 1958 The penetration of a fluid into a porous medium or Hele-Shaw 
cell containing a more viscous liquid. Proc. R .  SOC. Lond. A 245, 312-329. 

SAVAGE, M. D. 1977 Cavitation in lubrication. Part 1. On boundary conditions and cavity-fluid 
interfaces. J. Fluid Mech. 80, 743-755. 

42-54. 

L'Ecole Normale Supkrieure, Paris, France. 

Phys. Rev. E 49, 483493. 

Mech. 139, 291-308. 

Mech. 7, 481-500. 




